skip to main content


Search for: All records

Creators/Authors contains: "Martelaro, Nikolas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sidewalk robots are becoming increasingly common worldwide, yet their operation on public walkways presents challenges for pedestrians. This is especially true for people with motor disabilities (PWMD) who already manage obstacles such as inadequate ramps and public incivility. The addition of sidewalk robots could further intensify these difficulties, which poses an urgent need to examine how the design of sidewalk robots may influence the daily navigation experiences of PWMD. This poster illustrates findings from semi-structured interviews with ten PWMD, providing insights into their perspectives on the presence of sidewalk robots. The study uncovers potential conflicts in shared sidewalk use and the adaptive actions PWMD described needing to undertake in response. Interviewees raised concerns about whether the robots could accommodate the needs of PWMD, as compared to people walking on foot, and the repercussions of any shortcomings in this regard. Our research also examines tensions stemming from different robotic design choices, indicating the necessity for more accessible public robot designs. We further delve into PWMD’s interaction needs and modalities for routine operation and in the event of robot malfunction. As cities increasingly allow for the deployment of robots in public spaces, this work seeks to inform equitable design and deployment guidelines for sidewalk robots and calls for further research into the implications of the rise of public robots for the diverse populations that make up any given municipality. 
    more » « less
  2. Sidewalk delivery robots are being deployed as a form of last-mile delivery. While many such robots have been deployed on college campuses, fewer have been piloted on public sidewalks. Furthermore, there have been few observational studies of robots and their interactions with pedestrians. To better understand how sidewalk robots might integrate into public spaces, the City of Pittsburgh, Pennsylvania conducted a pilot of sidewalk delivery robots to understand possible uses and the challenges that could arise in interacting with people in the city. Our team conducted ethnographic observations and intercept interviews to understand how residents perceived of and interacted with sidewalk delivery robots over the course of the public pilot. We found that people with limited knowledge about the robots crafted stories about their purpose and function. We observed the robots causing distractions and obstructions with different sidewalk users (including children and dogs), witnessed people helping immobilized robots, and learned about potential accessibility issues that the robots may pose. Based on our findings, we contribute a set of recommendations for future pilots, as well as questions to guide future design for robots in public spaces. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  3. AI-based design tools are proliferating in professional software to assist engineering and industrial designers in complex manufacturing and design tasks. These tools take on more agentic roles than traditional computer-aided design tools and are often portrayed as “co-creators.” Yet, working effectively with such systems requires different skills than working with complex CAD tools alone. To date, we know little about how engineering designers learn to work with AI-based design tools. In this study, we observed trained designers as they learned to work with two AI-based tools on a realistic design task. We find that designers face many challenges in learning to effectively co-create with current systems, including challenges in understanding and adjusting AI outputs and in communicating their design goals. Based on our findings, we highlight several design opportunities to better support designer-AI co-creation. 
    more » « less
  4. Generative, ML-driven interactive systems have the potential to change how people interact with computers in creative processes - turning tools into co-creators. However, it is still unclear how we might achieve effective human-AI collaboration in open-ended task domains. There are several known challenges around communication in the interaction with ML-driven systems. An overlooked aspect in the design of co-creative systems is how users can be better supported in learning to collaborate with such systems. Here we reframe human-AI collaboration as a learning problem: Inspired by research on team learning, we hypothesize that similar learning strategies that apply to human-human teams might also increase the collaboration effectiveness and quality of humans working with co-creative generative systems. In this position paper, we aim to promote team learning as a lens for designing more effective co-creative human-AI collaboration and emphasize collaboration process quality as a goal for co-creative systems. Furthermore, we outline a preliminary schematic framework for embedding team learning support in co-creative AI systems. We conclude by proposing a research agenda and posing open questions for further study on supporting people in learning to collaborate with generative AI systems. 
    more » « less